Wednesday, September 26, 2012
Exoskeletons
Exoskeletons that can enchance human abilities to run faster, jump higher and even carry heavy loads
Recently I watched on tv , people carry their car over the cliff
Cloaking Devise(Invisible)
Using Crystals and metamaterials, Scientists in the UK succesfully managed to make paperclip 'invicible'.
No wiki
Retinal Implants
Reasearcher at Germany's Tuebingen Univercity succesfully tested implants
Alowing Blind people to see shape and objects.
Wiki
A retinal implant is a biomedical implant technology currently being developed by a number of private companies and research institutions worldwide. The implant is meant to partially restore useful vision to people who have lost their vision due to degenerative eye conditions such as retinitis pigmentosa or macular degeneration. There are two types of retinal implants currently in clinical trials:Epiretinal Implants (on the retina) and Subretinal Implants (behind the retina). Retinal implants provide subject with low resolution images by electrically stimulating retinal cells. Such images may be sufficient for restoring specific visual abilities, such as light perception and object recognition.
Thought Controled Prosthetics
Pentagon's DARPA is curently testing robotic limbs to be via controlled by brain via an implanted chip
Wiki
Wiki
The world’s first human testing of a mind-controlled artificial limb is ready to begin. A joint project between the Pentagon and Johns Hopkins Applied Physics Laboratory (APL), the Modular Prosthetic Limb will be fully controlled by sensors implanted in the brain, and will even restore the sense of touch by sending electrical impulses from the limb back to the sensory cortex. Last month APL announced it was awarded a $34.5 million contract with DARPA, which will allow researchers to test the neural prosthesis in five individuals over the next two years.
We’ve been reporting on major advances in artificial limbs for a while now, but this is the holy grail of prosthetic technology. Phase III testing – human subjects testing – will be used to tweak the system, both improving neural control over the limb and optimizing the algorithms which generate sensory feedback. The Modular Prosthetic Limb (MPL) is the product of years of prototype design – it includes 22 degrees of motion, allows independent control of all five fingers, and weighs the same as a natural human arm (about nine pounds). Patients will control the MPL with a surgically implanted microarray which records action potentials directly from the motor cortex.
Researchers plan to install the first system into a quadriplegic patient; while amputees can be outfitted with traditional prostheses, the MPL will be the first artificial limb that can sidestep spinal cord injury by plugging directly into the brain. This isn’t the first brain-controlled interface to be used in humans – we’ve previously reported on Braingate, a system that uses brain impulses to control computer cursors and restore communication tolocked-in patients. But the MPL will offer the first hard-wired neural control of bionic body parts, whether lost to injury or neurodegenerative disease.
The Defense Advanced Research Projects Agency (DARPA) is the one of more conceptually adventurous R&D agencies run through the Department of Defense. The brain-interface MPL is the most cutting-edge project – in fact, the original purpose – of their larger Revolutionizing Prosthetics program, which aims to improve prosthetic technology to treat veterans who have lost limbs in combat. DARPA often collaborates with (i.e. funds) university research teams and companies whose expertise can speed research along.
Such was the case with the Deka Luke Arm, a competing prosthesis technology which wecovered last year. Deka, which is owned and run by Segway inventor Dean Kamen, was awarded $18 million by DARPA as part of the Revolutionizing Prosthetics program. The result is the Luke Arm, a prosthesis with 18 degrees of freedom that can be controlled in several ways. Generally, the prosthesis is hooked up to both pads under the feet (kind of like a remote joystick) as well as shoulder sensors. The Luke Arm has also been wired into patients’ remaining chest nerves, using a technique called targeted muscle reinnervation. This technique allows something comparable to the MPL (users’ thoughts control their own nerves, wired to the prosthesis). The Smart Hand (which we covered last year) was developed by EU researchers and uses a similar prosthesis-to-nerve connection.
The Luke Arm is an impressive leap forward for prosthetic technology, offering precise movement as well as pressure control – plus it’s already in clinical trials. But if the MPL can deliver on its promise of a cleanly-controlled prosthesis that is wired directly to the brain, it will most likely become the gold standard of artificial limbs. What remains to be seen is how well the brain sensors can translate a patient’s intentions into smooth, functional movements of the arm (and whether they can do better than muscle reinnervation). The agency is working to improve the precision of neural recordings, as well as boost the maximum number of impulses that can be recorded per second. Improving these spatial and temporal recordings will help to match the MPL’s movements to the patient’s intentions.
The biggest problem with neural interfaces is their short lifespan. Over time, silicon chips embedded in wet tissue begin to break down within the body, and need to be replaced within about two years. Earlier this year, DARPA announced a program called Histology for Interface Stability Over Time; the goal is to pinpoint how and why neural implants fail, and ultimately to boost their lifespan to 70 years. Without more permanent neural arrays, patients would need to undergo replacement surgery multiple times over their lifespan.
While the research is primarily a joint venture between Johns Hopkins and DARPA, the project will tap multiple institutions for varying forms of expertise. The University of Pittsburgh (who have already implanted monkeys with sensors to control robot arms) and CalTech will help with brain-computer interface design. The University of Chicago will aid the project with restoring sensory input, which will be an integral part of the MPL. The University of Utah will provide experience with the actual brain sensors to be implanted, and HDT Engineered Technologies will bring their skill in prosthetic technology to the project.
The program has some serious hurdles to overcome, and undoubtedly more technical obstacles will present themselves as trials begin. That being said, this is the most exciting project in prosthetic science to date. A fully integrated artificial limb would mark a new milestone in bionic technology: wiring external devices safely and directly into the nervous system. No more remotely controlled sensors, no more muscular myosensors… instead, a direct line from thought to action, and sensory experience restored to the brain.
Robotic Big Dog
Big dog Dynamicallly Stable Quadruped robot
was created in 2005 by BostonDyanamic,NASA and Harvard University
Wiki
BigDog is funded by the Defense Advanced Research Projects Agency (DARPA) in the hopes that it will be able to serve as a roboticpack mule to accompany soldiers in terrain too rough for conventional vehicles. Instead of wheels or treads, BigDog uses four legs for movement, allowing it to move across surfaces that would defeat wheels. The legs contain a variety of sensors, including joint position and ground contact. BigDog also features a laser gyroscope and a stereo vision system.
BigDog's unique walking pattern is controlled through four legs, each equipped with four low-friction hydraulic cylinder actuators that power the joints. "The BigDog robot, labelled as a military robot mule, has subsequently proven its potential worth in its ability to reduce load and remove that burden from a soldier's back."
Built onto the actuators are sensors for joint position and force, and movement is ultimately controlled through an onboard computer which manages the sensors.
Approximately 50 sensors are located on BigDog. These measure the attitude and acceleration of the body, motion and force of joint actuators as well as engine speed, temperature and hydraulic pressure inside the robot's internal engine. Low-level control, such as position and force of the joints, and high-level control such as velocity and altitude during locomotion, are both controlled through the onboard computer.
BigDog was featured in episodes of Web Junk 20 and Hungry Beast, and in articles in New Scientist, Popular Science, Popular Mechanics, and The Wall Street Journal.
On March 18, 2008, Boston Dynamics released video footage of a new generation of BigDog known as AlphaDog[2]. The footage shows BigDog's ability to walk on icy terrain and recover its balance when kicked from the side.[3]
The refined equivalent has been designed by Boston Dynamics to exceed the BigDog in terms of capabilities and use to dismounted soldiers.
In February of 2012, DARPA, which has continued to support the programme, carried out the first outdoor exercise on the latest variation of the LS3 with it successfully demonstrating its full capabilities during a planned hike encompassing tough terrain.
Following the success, an 18-month plan has been unveiled, due to start the summer of 2012, which will see DARPA complete the overall development of the system and refine its key capabilities, ensuring its worth to dismounted warfighters before it is rolled out to squads operating in theatre. The BigDog must be able to demonstrate its ability to complete a 20 mi (32 km) trek within 24 hours without refuelling while carrying a load of 400 lb (180 kg), whereas a refinement of its vision sensors will also be conducted.
Printing Human Organ
3d bio printer already capable of growing arteries,
heart,teeth and bones can be make within 10 year,
heart,teeth and bones can be make within 10 year,
Subscribe to:
Posts (Atom)